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Water-quality protection and environmental forensics require rapid water monitoring and
source identification. In this paper, parallel factor analysis (PARAFAC) of fluorescence
excitation-emission matrix spectra (EEMS) was used to characterize and classify water samples
from landfills, wastewater treatment plants, lakes, and rivers. The study showed that the
optimal number of components was four to represent the data set. The fluorescence fingerprints
for water samples from different sources were sufficiently different, so qualitative water
classification could be achieved. Specifically, Component 1 was the major fluorescing centre in
river waters, with characteristics consistent with humic-like fluorophores; Component 2 was the
dominant fluorophore in the treated wastewaters; Component 3 was the characteristic
fluorophore in landfill leachates; and Components 1, 3, and 4 existed in lake waters at
comparable weight, among which Component 4 may be considered as a protein- or amino acid-
like fluorophore.

Keywords: Fluorescence; Excitation and emission spectrum; EEMS; PARAFAC analysis;
Water source classification

1. Introduction

During the Great Flood in 1993, 101 of the 114 counties in Missouri, US were in the
Federal Disaster Declaration area. In the following year, the Solid Waste Management
Program at Missouri Department of Natural Resources (MODNR) initiated
a programme to investigate the impact of the flood on landfill, with an attempt to
develop a rapid and effective method of identifying leachate-impacted surface water and
groundwater that could be used as water supplies. Since the chemistry of landfill
leachate is quite complex, but the concentrations of indicator constituents can be quite
low [1], a complete analysis of the leachate constituents is often too expensive.
Moreover, biodegradation, volatilization, and mixing/dilution could further complicate
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the analysis. Therefore, MODNR explored the use of fluorescence spectroscopy to trace
migration of landfill leachates in the environment, since the leachate exhibited relatively
strong fluorescence in the range of 250–450 nm [1]. The MODNR project showed that
fluorescence spectroscopy was effective in distinguishing leachates and leachate-affected
surface waters from background waters at dilution factors up to 100 and in
distinguishing leachate-affected groundwater from background water in karst aquifers.

Two steps are generally involved in water-source tracking using fluorescence
spectroscopy, as has been done by the MODNR project team: characterization of
various waters with known sources and classification of unknown waters by
comparison with the known using some characteristic parameters. A full-scan
excitation-emission fluorescence spectrum of water, known as the excitation-emission
matrix spectrum (EEMS), appears to contain sufficient information for water-source
identification, for as much as 40–60% of natural organic matter and many
contaminants themselves, such as those from the degradation of solid wastes at
landfills, are source-specific fluorophores [2–5].

Fluorescence in uncontaminated river water, groundwater, and seawater, generated
predominantly from natural organic matter (NOM) [2], has been applied to
differentiate water sources. Two types of fluorescence are often observed: a humic
acid-like fluorescence occurring at 420–450 nm from excitation at 230–260 and
320–350 nm; and a protein- or amino acid-like fluorescence with maximal emissions
between 300–305 nm and 340–350 nm with excitation at 220 and 275 nm, respectively
[6–9]. With this knowledge, Yan et al. [9] were able to successfully track river water
coming from its two upstreams. Studies on fluorescence characteristics in groundwater
also indicate that spatial and temporal variations in the relative wavelengths of various
fluorescence centres may provide information on dissolved organic matter (DOM)
source within a catchment and can be utilized as natural tracers [10]. Source-specific
differences in fluorescence spectra of seawater relative to freshwater samples [7, 11],
between humic substances of different origins, and between fulvic acids and humic acids
from the same source [12, 13], have also been documented.

Similar to natural uncontaminated waters, numerous types of fluorescing moieties
have been found in sewage wastewaters and landfill leachates. Several fluorescent
constituents in sewage wastewaters have been identified, e.g. humic and lignin
substances, variable amounts of steroids, phenols, non-volatile acids, oils, and trace
quantities of surface-active agents [4]. The leachates from municipal landfills are also
characterized by the complex chemical distribution of their constituents. Kang et al. [5]
reported that the fluorescence spectra of humic acids extracted from landfill leachates
have a relatively higher content of condensed aromatic compounds than the fulvic acids
obtained from the same source.

In addition to water with well-defined sources, impacts of wastewaters on water
quality can also be assessed with fluorescence spectroscopy. In a study examining the
effect of discharge from sewage treatment works on the downstream river waters, Baker
[3] found that the fluorescence intensities of both the fulvic-like centre (320–340 nm
excitation, 410–430 nm emission) and tryptophan fluorescence centre (275 nm excita-
tion, 350 nm emission) were significantly higher than the upstream samples for two of
the investigated rivers, River Team and River Twizell Burn in England. The similarity
of EEMS signatures between the downstream of River Team and River Twizell Burn
and those of the outfalls demonstrated that the fluorescence signatures were preserved
after mixing and dilution. In a later study involving five neighbouring rivers, including
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one influenced by a tissue-mill effluent, Baker [14] found that the fluorescence spectra of
the impacted water samples were dominated by tryptophan fluorescence and
a fluorescence centre possibly due to fluorescent whitening agents, while the three
other rivers exhibited lower fluorescence intensities typical of river systems with
tryptophan (sewage), humic-like (peat derived colour), and fulvic-like (natural organic
matter) sources. Fluorescence spectroscopy was also used to detect sewage pollution in
a small, urbanized catchment in England, showing that over 10% of the river’s
discharge was provided by sewage inputs and these inputs could be grouped into clean
storm water with low ammonia and tryptophan intensity, grey waters with high
tryptophan intensity and low ammonia concentration, and foul waters with high
tryptophan intensity and ammonia concentration [15].

The applications of fluorescence spectroscopy discussed above are mainly based on
visual comparison and simple subtraction of EEMS. Such an approach, however, has
significant limitations because of the constitutional complexity of many contaminated
water samples and the intrinsic lack of selectivity for EEMS in general. Recent
development in decomposing EEMS with several multivariate statistical methods,
however, allows for more objective and expedite sample comparisons. One of these
approaches is the parallel factor analysis (PARAFAC), which has been successfully
used to characterize and match oil samples [16] and estuarial water samples [17–19].

In this study, PARAFAC model was applied for objective classification of waters
from different sources, including lakes, landfills, wastewater-treatment plants, and
rivers, based on their fluorescence EEMS. The method involved fluorescence EEMS
collection, data processing, and two algorithms of PARAFAC fitting, both of which
generated fingerprints based on the relative ‘composition’ of fluorescent components
(fluorophores). As a result, we could objectively classify water samples from various
sources by plotting score matrix and grouping samples with similar component scores.

2. Experimental

2.1 Water sampling

Four types of water from various sources, as listed in table 1, were collected and
analysed for their fluorescence EEMS. Containers used for water collection (250mL
polyethylene screw-cap bottles and EPA 40mL vials) were cleaned by soaking in 1M
HCl solution for at least 24 h and rinsed thoroughly with deionized and Milli-Q water
(Millipore Inc.) prior to use. Grab samples of surface water were gathered from docks
or shorelines, while leachate samples were collected from taps of landfill monitoring
wells. The collected samples were refrigerated at 4�C immediately upon arrival at the
laboratory for long-term use. Before performing fluorescence scans, samples were
filtered through a 0.2mm nylon syringe filter (Fisher Scientific Co.) and allowed to
warm up to room temperature.

2.2 EEM spectroscopy

All fluorescence measurements were performed on the Hitachi F-4500 Spectrograph
(Hitachi Co.). Samples were held in a standard 1-cm quartz cuvette, and the xenon lamp
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voltage was kept constant at 700V for all experiments. Fluorescence spectra were
collected as EEMS by scanning emission spectra at a range of excitation wavelengths,
in which emission spectra were gathered from 250 nm to 550 nm in 3-nm steps, whereas
the excitation wavelength was stepped in 2 nm from 200 nm to 400 nm. The fluorescence
scans were performed at a constant room temperature of 21� 2�C. To eliminate the
inner filtration effect on the fluorescence measurement, samples of landfill leachates and
wastewater treatment plant effluents were diluted so the maximum absorbance within
the whole wavelength range of EEMS scan was less than 0.05. No dilution was needed
for the lake and river water samples to meet this criterion. The spectra gathered were
first reported as excel files and then imported into MATLAB (version 6.5) for data
analysis by using an in-house program.

2.3 PARAFAC model

PARAFAC model is an innovative decomposition method for EEMS based on the
assumption of trilinearity of fluorescence spectra, which applies to a single excitation-
emission wavelength pair with a single fluorophore and a full-scan EEMS with multi-
fluorophores.

For a sample with only a single fluorophore, its fluorescence intensity can be
expressed as [20]:

aij ¼ 2:303Ffbcyð�iÞ�ð�iÞI0ð�jÞ"ð�jÞ, ð1Þ

where aij is the fluorescence intensity at emission wavelength �i and excitation
wavelength �j; Ff the quantum efficiency of the fluorescence; b the path length of the
sample; c the fluorophore concentration; �(�i) the fraction of fluorescence photons
emitted at wavelength �i; �(�i) the wavelength dependency of the sensitivity of the
analysing system, including geometrical factors, quantum efficiency of the detector, etc.;
I0(�j) the intensity of exciting light incident on the sample at wavelength �j; and "(�j) the
molar extinction coefficient of the fluorophore. An important assumption in deriving
the equation (1) is that the optical density is �1 for all �i.

Table 1. Types and locations of 15 water samples from Missouri, United States.

Landfill leachate Jefferson City Landfill, MO (Ljc)
North St. Louis Landfill, MO (Lnsl)

Treated wastewater (effluent) Columbia Wastewater Treatment Plant, MO (Wcol)
Lauerence Wastewater Treatment Plant, MO (Wlaur)
North Topeka Wastewater Treatment Plant, MO (Wntop)
Topeka Wastewater Treatment Plant, MO (Wtop)

Lake water Fox Valley Lake (Kfox)
Hazel Hill Lake (Khaz)
Odessa Lake (Kode)

River water Mississippi River upstream (Rmisus)
Mississippi River downtown (Rmisms)
Mississippi River downstream (Rmisds)
Missouri River Jefferson City upstream (Rmizus)
Missouri River Jefferson City midstream (Rmizms)
Missouri River Jefferson City downstream (Rmizds)
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A full-scan EEMS contains a set of I� J fluorescence intensity data, with I being the
number of emission wavelengths and J the number of excitation wavelengths.
If N fluorescence spectra are arranged into a three-way array, a three-way tensor A
of dimensions of N� I� J will be generated, which can be decomposed by parallel
factor analysis, known as PARAFAC model. The theory and application of
PARAFAC model have been well documented in the literature [18, 19, 21–24]. The
decomposition of A, the three-way array of fluorescence data set with dimensions of
(N� I� J ), is generally formulated as:

A ¼ CðEmj � jExÞ0 þ E: ð2Þ

Here, C is the score matrix containing the concentration information of each factor
(fluorophore) with dimensions of (N� n); Em the emission wavelength loading matrix
with dimensions of (I� n); Ex the excitation wavelength loading matrix with
dimensions of (J� n); N the number of EEMS; n the number of factors in
PARAFAC model, which can literally be interpreted as the number of the types of
fluorophores in all samples; and E the residual of the three-way array with dimensions
of (N� I� J ).

In this study, the PARAFAC model was fitted in MATLAB using the N-way
toolbox from http://www.models.kvl.dk/source. The convergence criteria and max-
imum number of iterations were set at 10–6 and 5000, respectively. The PARAFAC
model was chosen because it could resolve the EEM signals of the unknown samples
from that of any overlapping and uncalibrated interferents [25]. In addition, the
parameters in the model, C, Em, and Ex, can be chemically interpreted as the
concentration contribution from n ‘pure’ components (factors/fluorophores), emission
spectra of the n ‘pure’ components, and excitation spectra of the n ‘pure’ components,
respectively. Other multivariable models such as the N-way partial least-squares
regression-discriminant analysis (NPLS-DA) have less apparent chemical meanings
[17]. However, the PARAFAC model does have limitations in the permutation
indeterminacy of the spectra for the n ‘pure’ components, the selecting of the number
of factors, and the detection of outliers [17, 24]. To use PARAFAC model in this
study, we removed first Rayleigh and Raman scatters and selected the proper number
of components (factors). The model was then fitted with two algorithms, i.e. direct
mode and calibration-test mode (http://www.models.kvl.dk/source). Source classifica-
tion for the samples was finally obtained by plotting score matrix and grouping
samples with similar component scores.

3. Results and discussion

3.1 Removing Rayleigh and Raman scatters

Rayleigh and Raman scatters cannot be modelled properly because they do not comply
with the premise of trilinearity, so they need to be removed prior to PARAFAC model
calculation [17, 22, 23]. The Rayleigh scatter showing up in the EEMS as straight
diagonal lines is elastic, with the first-order scattered wavelengths equal to excitation
wavelengths and the second-order scattered wavelengths equal to twice the excitation
wavelengths. In comparison, Raman scatter is inelastic, and emission is shifted to
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longer wavelengths compared with excitation wavelengths. Several approaches have

been reported in the literature to address these scatters [16, 26, 27]. To eliminate the

impact of first- and second-order Rayleigh scatters in this study, missing values (not-

a-number, NaN) were inserted in the upper-right triangle of EEMS (first-order and

beyond) and the lower right triangle of EEMS (second-order and beyond). In addition,

the excitation-emission pairs with emission wavelengths 0–10 nm higher than excitation

wavelengths of the first-order Rayleigh scatter and 0–50 nm lower than twice the

excitation wavelengths of the second-order Rayleigh scatter were also replaced with

NaN, which removed the data that might still be affected by Rayleigh scatters.

To mitigate the impact of Raman scatter, an EEMS of blank sample (Mill-Q water) was

subtracted from the EEMS of every sample. EEMS after removal of the Rayleigh and

Raman scatters were normalized by dividing the spectrum by the intensity of the highest

peak left. By doing this, the impact of varying DOM concentrations in different samples

on the component score matrix can be reduced.
To visualize the impact of eliminating Rayleigh and Raman scatters, the original

and modified fluorescence spectra of a Mississippi River sample were shown in

figure 1. On the original fluorescence spectrum (figure 1a), two diagonal lines from

the first-order (left) and second-order (right) Rayleigh scatters dominate the

landscape. After removing these scatters, other features are visually more obvious

(figure 1b).

(a) (b)

Figure 1. Fluorescence spectra of Missouri River Jefferson City upstream (Rmizus): (a) original spectrum;
(b) spectrum with reduction of a blank, removal of first- and second-order Rayleigh scatters, and
normalization with the highest peak remaining.
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3.2 Determining the number of components

For field-collected samples, determining the best number of components (factors), n, in
the PARAFAC model is challenging, because it is impossible to know the exact number
and nature of fluorophores present in the samples. However, if we consider that each
component obtained from PARAFAC model corresponds to a defined group of
fluorophores, there are several very powerful tools that can be applied to address this
issue, including tools to (1) test the effect of increasing number of components on the
number of iterations used to fit the model; (2) conduct the split-half analysis for two
sample sets describing the same common variation; and (3) calculate the core consistency
diagnostic (CORCONDIA) as a function of component number [28]. In this study, the
appropriate number of components (factors) was determined to be four based on the
assessments with methods (3). According to Bro [28], if the PARAFAC model is valid,
the core consistency is close to 100%; if too many components are used, the core
consistency will be close to zero; and if the consistency is around 50%, the model is
unstable. Fitting the model with our data shows that the computed values of core
consistency were 47, 75, and 92% when the number of components used was 5, 4, and 3,
respectively. Further, when the selected number of components was 3, two of the three
emission loadings were bimodal, indicating that the number of components chosen was
too small. When the number of components was chosen to be 4, only one of the four
emission loadings was bimodal (as shown later in figure 2), suggesting that four
components could represent the data set most appropriately.

3.3 Fitting the model with direct mode

To qualitatively characterize and classify the samples, we stacked all 15 samples
examined into a three-way tensor and fitted PARAFAC model with the data.
The excitation loading and emission loading of the four components are illustrated in
figure 2(a).

It appears that some identified fluorescing components in this study could be
assigned to the fluorescing centres that have been previously identified in natural waters
and anthropogenic waters. Component 1 has an emission fluorescent centre at
450–480 nm from excitation at 250 nm (figure 2a), which is consistent with the features
of UV fluorescing humic-like spectra as reported by Hall et al. [17]. There is also
a shoulder at about 330–360 nm, which could be considered as visible fluorescing humic
acids [29]. This component exhibits emission at a longer wavelength than other
components, suggesting that it is composed of the DOM with more conjugated
molecules [30]. Component 2 has the most complicated excitation and emission spectra.
Two excitation peaks with maxima at 275 and 350 nm, as well as an excitation peak that
is below the 200 nm, the lower limit of our EEM scan, were observed. The emission
spectrum comprises two fluorescent peaks centred at 300 and 450 nm, respectively.
Notice that Component 2 contains an emission peak and an excitation peak at shorter
wavelengths than those in other components, suggesting that the DOM in Component 2
is less conjugated or contains few functional groups [18, 29, 30]. The multiple-band
characteristics of the spectra indicate the presence of greatly differing fluorophores in
Component 2 [18, 19]. Since a relatively small number of samples from quite distinct
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(a)

(b)

Figure 2. Excitation and emission loadings of the samples: (a) direct mode; (b) calibration-test mode.

142 B. Hua et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
4
 
1
7
 
J
a
n
u
a
r
y
 
2
0
1
1



location and sources were used, this component could not be decomposed into two or
even more different peaks. Component 3 is characterized with double excitation
maxima at 230 and 325 nm, and a single, well-defined emission peak at 410–430 nm.
Component 4 may be considered as a protein- or amino acid-like fluorophore with a
fluorescent centre at 330–350 nm emission from excitation at 240 and 300 nm [6–9]. In
short, different components generally show substantially different excitation and
emission loadings, but some overlaps exist such as between the emission loadings of
Components 3 and 4.

The score matrix of these samples is shown in figure 3 as two plots: (a) Component 1
versus Component 2, and (b) Component 3 versus Component 4. Notice that the score
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Figure 3. Water source identification by grouping component scores (direct mode): (a) source classification:
Component 1 vs. Component 2; (b) source classification: Component 3 vs. Component 4.
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matrix could also be plotted in other combinations, e.g. Component 1 versus
Component 3 and Component 2 versus Component 4. It is clear that different
fluorophores dominate in different waters, which therefore provides a basis for the
water source classification. In the river waters, Component 1 is the dominant
fluorophore. A similar fluorophore has been found in samples from forested and
wetland regions [18]. In the treated wastewater, Component 2 is the dominant
fluorophore. As discussed above, the spectra of Component 2 indicate the presence of
DOM with less conjugated/less aromatic or with fewer functional groups than those in
the other components [18, 29, 30]. This suggests that most of the DOM in the treated
wastewater is probably made of low-molecular-weight organic compounds that have
not gone through the repeated decomposition/polymerization processes responsible for
humic acid formation. In the landfill leachate, Component 3 dominates, which has
often been identified in terrestrially dominated end-member samples, originating from
terrestrially derived organic matter [9, 18, 19], but also observed in some marine water
samples, originating from marine humic matter [6–8]. In the lake waters, Components
1, 3, and 4 are present at almost the same weight, which may reflect complex sources of
these lakes.

3.4 Fitting the model with calibration-test mode

Source identification of unknown water samples can also be performed with the other
algorithm, called the calibration-test mode. This involves fitting the model with data
from samples with known sources and calculating the score matrix, and then classifying
the unknown samples by plotting the score matrix and grouping samples with similar
component scores. In a sense, this algorithm is closer to identification of unknown
samples with a database of known sources. As a demonstration, we arbitrarily chose
one lake water (Kode), one treated wastewater (Wtop), and two river-water samples
(Rmisus and Rmizus) as having unknown sources. Fitting the PARAFAC model with
the remaining 11 samples in the same way as we did using the direct mode, we obtained
excitation loading and emission loading, as shown in figure 2(b). Of note is that the
excitation and emission loadings calculated with these two modes are almost identical
(figure 2a and figure 2b), which can be taken as a strong validation for the application
of the model. The computed score matrix is illustrated in figure 4(a) and (b). This
process can be referred to as the calibration process, which provides ‘standard’
excitation and emission loadings. By inserting the computed excitation loading and
emission loading into the PARAFAC model, the score matrix for the four unknown
samples was calculated and illustrated in figure 4(c) and (d). In the process of this test,
all unknown samples can be easily classified by comparison with the corresponding
source categories.

4. Conclusions

In summary, EEMS provide rich information that allows rapid qualitative classification
of water sources through two algorithms of PARAFAC modelling. For the 15 waters
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examined, four components are optimal to represent the data set. With different

components dominating in different waters, the water source characterization and

classification could be readily carried out. It is clear that the established procedure is

objective and does not rely on the experience of individual analysts for visual sample

comparisons, as has often been practised. The results from the PARAFAC model

provide information on the concentration, emission wavelength, and excitation

wavelength of each component. Since the fluorescence EEM technique is much more
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Figure 4. Water-source identification by grouping component scores (calibration-test mode).
(a) Source classification: Comp. 1 vs. Comp. 2 (calibration). (b) Source classification: Comp. 3 vs. Comp.
4 (calibration). (c) Source classification: Comp. 1 vs. Comp. 2 (test). (d) Source classification: Comp. 3 vs.
Comp. 4 (test).
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sensitive than absorbance measurement, and the modern fluorescence spectrometer
allows rapid EEMS data acquisition, it is potentially possible for online monitoring
of wastewater treatment processes.
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